Deformations of trianalytic subvarieties of hyperkähler manifolds
نویسنده
چکیده
Let M be a compact complex manifold equipped with a hyperkähler metric, and X be a closed complex analytic subvariety of M. In alg-geom 9403006, we proved that X is trianalytic (i. e., complex analytic with respect to all complex structures induced by the hyperkähler structure), provided that M is generic in its deformation class. Here we study the complex analytic deformations of trian-alytic subvarieties. We prove that all deformations of X are trianalytic and naturally isomorphic to X as complex analytic varieties. We show that this isomorphism is compatible with the metric induced from M. Also, we prove that the Douady space of complex analytic deformations of X in M is equipped with a natural hyperkähler structure.
منابع مشابه
Trianalytic subvarieties of the Hilbert scheme of points on a K 3 surface
Let X be a hyperkähler manifold. Trianalytic subvarieties of X are subvarieties which are complex analytic with respect to all complex structures induced by the hyperkähler structure. Given a K3 surface M , the Hilbert scheme classifying zero-dimensional subschemes of M admits a hy-perkähler structure. We show that for M generic, there are no trianalytic subvarieties of the Hilbert scheme. This...
متن کاملDeformations of Trianalytic Subvarieties Deformations of Trianalytic Subvarieties of Hyperkk Ahler Manifolds
Let M be a compact complex manifold equipped with a hyperkk ahler metric, and X be a closed complex analytic subvariety of M. In alg-geom 9403006, we proved that X is trianalytic (i. e., complex analytic with respect to all complex structures induced by the hyperkk ahler structure), provided that M is generic in its deformation class. Here we study the complex analytic deformations of trian-aly...
متن کاملSubvarieties in non-compact hyperkähler manifolds
Let M be a hyperkähler manifold, not necessarily compact, and S ∼= CP 1 the set of complex structures induced by the quaternionic action. Trianalytic subvariety of M is a subvariety which is complex analytic with respect to all I ∈ CP . We show that for all I ∈ S outside of a countable set, all compact complex subvarieties Z ⊂ (M, I) are trianalytic. For M compact, this result was proven in [V1...
متن کاملHyperkähler embeddings and holomorphic symplectic geometry I. Mikhail Verbitsky,
Hyperkähler embeddings and holomorphic symplectic geometry I. 0. Introduction. In this paper we are studying complex analytic subvarieties of a given Kähler manifold which is endowed with a holomorphic symplectic structure. By Calabi-Yau theorem, the holomorphically symplectic Kähler mani-folds can be supplied with a Ricci-flat Riemannian metric. This implies that such manifolds are hyperkähler...
متن کاملLagrangian Submanifolds in Hyperkähler Manifolds, Legendre Transformation
We develop the foundation of the complex symplectic geometry of Lagrangian subvarieties in a hyperkähler manifold. We establish a characterization, a Chern number inequality, topological and geometrical properties of Lagrangian submanifolds. We discuss a category of Lagrangian subvarieties and its relationship with the theory of Lagrangian intersection. We also introduce and study extensively a...
متن کامل